What is – Azure Firewall Policy Analytics

Ever since the change to Azure Firewall Policy from classic rules, there has been a requirement and a want to have greater inspection capabilities with regard to your Azure Firewall Policies (AFPs). Depending on your environment, you might have several, or several hundred AFPs in place, securing your Azure footprint. Regardless, analytics of these policies is crucial.

With the increasing adoption of cloud workloads, and as workloads move to the cloud, network security policies like AFPs must evolve and adapt to the changing demands of the infrastructure, which can be updated multiple times a week, which can make it challenging for IT security teams to optimise rules.

Optimisation while at least retaining, if not increasing security, is key objective with AFP Analytics. As the number of network and application rules grow over time, they can become suboptimal, resulting in degraded firewall performance and security. Any update to policies can be risky and potentially impact production workloads, causing outages, unknown impact and ultimately – downtime. We’d like to avoid all of that if possible!

AFP Analytics offers the ability to analyse and inspect your traffic, right down to a single rule. Several elements are enabled without action, however, I would recommend enabling the full feature set, which is a simple task. Open the AFP you’d like to enable it for, and follow the steps linked here.

Once enabled, AFP Analytics starts to fully inspect your Policy and the traffic passing through it. My demo Azure Firewall, currently looks fantastic, as nothing is happening 🙂

AFP Analytics blade in Azure Portal

There are several key features to make use of with AFP Analytics, Microsoft list them as follows:

  • Policy insight panel: Aggregates insights and highlights relevant policy information. (this is the graphic above)
  • Rule analytics: Analyses existing DNAT, Network, and Application rules to identify rules with low utilization or rules with low usage in a specific time window.
  • Traffic flow analysis: Maps traffic flow to rules by identifying top traffic flows and enabling an integrated experience.
  • Single Rule analysis: Analyzes a single rule to learn what traffic hits that rule to refine the access it provides and improve the overall security posture.

Now I view all of these as useful. I can see the purpose and I can see myself using them regularly. However, I was most excited about – Single Rule Analysis – that was, until I went to test and demo it.

I created a straight forward Application rule, a couple of web categories allowed on HTTPS. I enabled Analytics, sat back for a bit, got a coffee (it recommends 60 minutes due to how logs are aggregated in the back end) and then tried it out. To my disappointment, I was met with the below:

Tags and categories I could initially understand, but IP Groups confused me. I thought, this is a core feature, why not allow analysis when this is in scope – then I realised; the analysis is aiming to optimise the rule. AFP views rules using these as fairly spot on already. So, I decide to create a stupid rule (in my opinion). Allowing TCP:443 from around 20 IPs to around 10 IPs. First up, my Insight Panel flagged it

Next, Single Rule Analysis and…success, it dislikes the rule! It summarises it, and flags the aspects it does not feel are optimal. I did expect the recommendation to be to delete the rule, as you can see it is flagging there is no traffic matching the rule, but perhaps the caution here is in combination with the rule and data in place for the last 30 days, or lack thereof.

I can see this feature being really powerful in a busy production environment. There are some more scenarios listed on Microsoft’s blog announcement of GA earlier in the year too, if you’d like to check them out.

A final note. While you might think that it’s only the Log Analytics element you have to pay for to make use of AFP Analytics, you would be wrong. There is a charge for the enablement, analysis, and insight components. These price in at around €225/month, billed hourly. So double check your budget before enabling on every AFP.

As always, if you have any questions, please just ping me!

Exploring – Azure Firewall Basic

Anyone who follows this blog knows that Azure Firewall is a key resource for me in successful Azure deployments. Its combination of ease of deployment and functionality easily outpace alternative vendor choices on Azure. Up until now, we have had a Standard and Premium SKU. The Premium SKU introduced new features to Standard. Now, we have a Basic SKU and several features have been removed. Let’s explore what the Basic SKU offers.

First up, deployment and infrastructure. At it’s core, Basic is the same resource. Meaning it still has built-in HA. However, it is a fixed scale, meaning two instances only. However, Availability Zones are still covered, meaning choices up to 99.99% for SLAs are achievable. Fixed scale does mean a more limited bandwidth capability, Basic has up to 250Mbps in comparison to Standard which is up to 30Gbps. That’s not a typo!

Microsoft call out the fact they are targeting SMB customers with this SKU. But that doesn’t mean that the features of Basic wouldn’t suit an Enterprise spoke, or specific environment requirement where cost vs features work.

So let’s take a look at the features included. The basics are all the same, multiple Public IPs, inbound/outbound NAT etc. (there is a full list here) but some specifics worth calling out are:

  • Network Rules – As Basic does not support DNS Proxy, you can only use standard, non-FQDN rules in Network filtering. More on that for Standard here.
  • Threat Intelligence – While it can be enabled, it can only be used in alert mode. This means you would have to accept this, and/or monitor logs to adjust rules based on alerts.

This means that once you are aware of the functionality and limitations, Basic may be a great choice for your environment. Especially when you consider one of its main benefits – cost. There are two costs associated directly with Azure Firewall:

  • Deployment
  • Data Processing

Deployment wise, Basic is considerably cheaper versus Standard. Deploying to North Europe, Basic should be approximately €266/month in comparison to Standard at circa €843/month.

However, data processing is more expensive on Basic. 1Tb of data processing for Basic, in North Europe will be approximately €62/month, which is quite a bit more than Standard coming in at around €15/month. So this is definitely one to keep an eye on in your environment. There is no reservation or similar choice here, Standard and Premium simply have a lower processing price.

Thankfully, integration with Azure Monitor is unchanged across SKUs, so you can capture all of the data you need.

The experience within portal, or via shell for deployment and management is also unchanged. The portal dynamically calls out what is allowed/functional when using a Basic policy, so confusion is avoided.

In conclusion, I think Basic is a great addition to the AFW family. I would have liked to see DNS Proxy included in the feature set, I see this deployed everywhere now and the Network rule functionality it adds is excellent. I am also interested to see how/if that throughput limit will come into play for specific scenarios.

As always, if there are any questions, please get in touch!

Exploring – Azure Firewall Analytics

Azure Firewall is ever growing in popularity as a choice when it comes to perimeter protection for Azure networking. The introduction of additional SKUs (Premium and Basic) since its launch have made it both more functional while also increasing its appeal to a broader environment footprint.

For anyone who has used Azure Firewall since the beginning, troubleshooting and analysis of your logs has always had a steep-ish learning curve. On one hand, the logs are stored in Log Analytics and you can query them using Kusto, so there is familiarity. However, without context, their formatting can be challenging. The good news is, this is being improved with the introduction of a new format.

Previously logs we stored using the Azure Diagnostics mode, with this update, we will now see the use of Resource-Specific mode. This is something that will become more common across many Azure resources, and you should see it appear for several in the Portal already.

Destination table in the Portal

What difference will this make for Azure Firewall? This will mean individual tables in the selected workspace are created for each category selected in the diagnostic setting. This offers the following improvements:

  • Makes it much easier to work with the data in log queries
  • Makes it easier to discover schemas and their structure
  • Improves performance across both ingestion latency and query times
  • Allows you to grant Azure RBAC rights on a specific table

For Azure Firewall, the new resource specific tables are below:

  • Network rule log – Contains all Network Rule log data. Each match between data plane and network rule creates a log entry with the data plane packet and the matched rule’s attributes.
  • NAT rule log – Contains all DNAT (Destination Network Address Translation) events log data. Each match between data plane and DNAT rule creates a log entry with the data plane packet and the matched rule’s attributes.
  • Application rule log – Contains all Application rule log data. Each match between data plane and Application rule creates a log entry with the data plane packet and the matched rule’s attributes.
  • Threat Intelligence log – Contains all Threat Intelligence events.
  • IDPS log – Contains all data plane packets that were matched with one or more IDPS signatures.
  • DNS proxy log – Contains all DNS Proxy events log data.
  • Internal FQDN resolve failure log – Contains all internal Firewall FQDN resolution requests that resulted in failure.
  • Application rule aggregation log – Contains aggregated Application rule log data for Policy Analytics.
  • Network rule aggregation log – Contains aggregated Network rule log data for Policy Analytics.
  • NAT rule aggregation log – Contains aggregated NAT rule log data for Policy Analytics.

So, let’s start with getting logs enabled on your Azure Firewall. You can’t query your logs if there are none! And Azure Firewall does not enable this by default. I’d generally recommend enabling logs as part of your build process and I have an example of that using Bicep over on Github, (note this is Diagnostics mode, I will update it for Resource mode soon!) However, if already built, let’s look at simply doing this via the Portal.

So on our Azure Firewall blade, head to the Monitoring section and choose “Diagnostic settings”

Azure Firewall blade

We’re then going to choose all our new resource specific log options

New resource specific log categories in Portal

Next, we choose to send to a workspace, and make sure to switch to Resource specific.

Workspace option with Resource option chosen in Portal

Finally, give your settings a name, I generally use my resource convention here, and click Save.

It takes a couple of minutes for logs to stream through, so while that happens, let’s look at what is available for analysis on Azure Firewall out-of-the-box – Metrics.

While there are not many entries available, what is there can be quite useful to see what sort of strain your Firewall is under.

Metrics dropdown for Azure Firewall

Hit counts are straight forward, they can give you an insight into how busy the service is. Data Processed and Throughput are also somewhat interesting from an analytics perspective. However, it is Health State and SNAT that are most useful in my opinion. These are metrics you should enable alerts against.

For example, an alert rule for SNAT utilisation reaching an average of NN% can be very useful to ensure scale is working and within limits for your service and configuration of IPs.

Ok, back to our newly enabled Resource logs. When you open the logs tab on your Firewall, if you haven’t disabled it, you should see a queries screen pop-up as below:

Sample log queries

You can see there are now two sections, one specifically for Resource Specific tables. If I simply run the following query:

AZFWNetworkRule

I get a structured and clear output:

NerworkRule query output

To get a comparative output using Diagnostics Table, I need to run a query similar to the below:

// Network rule log data 
// Parses the network rule log data. 
AzureDiagnostics
| where Category == "AzureFirewallNetworkRule"
| where OperationName == "AzureFirewallNatRuleLog" or OperationName == "AzureFirewallNetworkRuleLog"
//case 1: for records that look like this:
//PROTO request from IP:PORT to IP:PORT.
| parse msg_s with Protocol " request from " SourceIP ":" SourcePortInt:int " to " TargetIP ":" TargetPortInt:int *
//case 1a: for regular network rules
| parse kind=regex flags=U msg_s with * ". Action\\: " Action1a "\\."
//case 1b: for NAT rules
//TCP request from IP:PORT to IP:PORT was DNAT'ed to IP:PORT
| parse msg_s with * " was " Action1b:string " to " TranslatedDestination:string ":" TranslatedPort:int *
//Parse rule data if present
| parse msg_s with * ". Policy: " Policy ". Rule Collection Group: " RuleCollectionGroup "." *
| parse msg_s with * " Rule Collection: "  RuleCollection ". Rule: " Rule 
//case 2: for ICMP records
//ICMP request from 10.0.2.4 to 10.0.3.4. Action: Allow
| parse msg_s with Protocol2 " request from " SourceIP2 " to " TargetIP2 ". Action: " Action2
| extend
SourcePort = tostring(SourcePortInt),
TargetPort = tostring(TargetPortInt)
| extend 
    Action = case(Action1a == "", case(Action1b == "",Action2,Action1b), split(Action1a,".")[0]),
    Protocol = case(Protocol == "", Protocol2, Protocol),
    SourceIP = case(SourceIP == "", SourceIP2, SourceIP),
    TargetIP = case(TargetIP == "", TargetIP2, TargetIP),
    //ICMP records don't have port information
    SourcePort = case(SourcePort == "", "N/A", SourcePort),
    TargetPort = case(TargetPort == "", "N/A", TargetPort),
    //Regular network rules don't have a DNAT destination
    TranslatedDestination = case(TranslatedDestination == "", "N/A", TranslatedDestination), 
    TranslatedPort = case(isnull(TranslatedPort), "N/A", tostring(TranslatedPort)),
    //Rule information
    Policy = case(Policy == "", "N/A", Policy),
    RuleCollectionGroup = case(RuleCollectionGroup == "", "N/A", RuleCollectionGroup ),
    RuleCollection = case(RuleCollection == "", "N/A", RuleCollection ),
    Rule = case(Rule == "", "N/A", Rule)
| project TimeGenerated, msg_s, Protocol, SourceIP,SourcePort,TargetIP,TargetPort,Action, TranslatedDestination, TranslatedPort, Policy, RuleCollectionGroup, RuleCollection, Rule

Obviously, there is a large visual difference in complexity! But there are also all of the benefits as described earlier for Resource Specific. I really like the simplicity of the queries. I also like the more structured approach. For example, take a look at the set columns that are supplied on the Application Rule table. You can now predict, understand, and manipulate queries with more detail than ever before. You can check out all the new tables by searching “AZFW” on this page.

Finally, a nice sample query to get you started. One that I use quite often when checking on new services added, or if there are reports of access issues. The below gives you a quick glance into web traffic being blocked and can allow you to spot immediate issues.

AZFWApplicationRule
| where Action == "Deny"
| distinct Fqdn
| sort by Fqdn asc

As usual, if there are any questions, get in touch!

Global Azure Virtual 2020

As a result of the current global health crisis, the Global Azure events have moved entirely online. Spread over three days (23rd-25th April) it promises to be an amazing mix of content from contributors from all corners of the world.

In the UK & Ireland, we have a local event. Organised by a great team, all of the details are here – https://azureglobalbootcamp2020.azurewebsites.net/

There is a mix of live, and pre-recorded sessions with a wide range of topics.

I’ve contributed a session myself, pre-recorded, on Azure Foundations. If anyone you know is looking to make a start on Azure, have them check it out! #GlobalAzureVirtual

How to – Use Azure Firewall IP Groups

If you’re familiar with Azure Firewall you would know that the introduction of an IP Group resource is most welcome. IP Groups are still in preview at the moment, so as usual be cautious on production environments as there is no SLA. However, it’s always nice to try out a service to see if it can work for you, or make your life easier.

IP Groups themselves are a relatively simple resource. They can contain a single IP address, multiple IP addresses, or one or more IP address ranges. They can then be used for DNAT, Network, or Application rules in Azure Firewall.

They currently have some interesting limitations that are a little bit confusing at first. From Docs:

For 50 IP Groups or less, you can have a maximum of 5000 individual IP addresses each per firewall instance. For 51 to 100 IP Groups, you can have 500 individual IP address each per firewall instance.

What this means is that while your rules should already be scoped accurately, you may need to use a couple of extra IP groups if you’re working with large address ranges. A simple example is a /16 will simply not work in an IP Group, /20 is basically your limit per IP Group.

I actually tried this on my own sub and it appears to actually work for now. Expect that to change as preview progresses.

If you’ve worked with Azure Firewall, I’m sure you’ve already thought of several places these rules can really help. For me, it was within Network Rule Collections.

However, as the service is in preview, there are a few aspects to be ironed out. Unfortunately, one of those is the ability to add an IP Group as a destination within a network rule when using the Portal. See below

UPDATE: As expected, this is now resolved! However, read on to see how to do this at scale.

At this point, I am going to flag extreme caution if your Azure Firewall is in production and you are trying this. It is very easy to overwrite all of your collections, take your time and export them before making any changes!

I’m a Windows guy, so I’m going to explain how to do this with Powershell, but it also works for CLI. Similarly, I’m showing a Network Rule, same process works for Application Rules.

First up, you need to all of the details for your Azure Firewall as we will work with it’s config as a variable and finally update it.

#Get the AFW I want to edit
$afw = Get-AzFirewall -Name wda-afw-test -ResourceGroupName rg-wda-afw

#Save current Network Rule Collection to a variable for reference
$oldcol = $afw.NetworkRuleCollections

#Get the IP Group I want to use
$ipg = Get-AzIpGroup -Name wda-group1 -ResourceGroupName rg-wda-afw

#Create my new network rule
$newrule = New-AzFirewallNetworkRule -Name "rule2" -Protocol TCP -SourceAddress * -DestinationIpGroup $ipg.Id -DestinationPort 445

Now this is where it can get a bit tricky. Collections are stored as nested arrays. My AFW has two collections, I want to add my new rule to the second one which means I need to reference index 1. See the collections below, the one we’ll be editing is “collection2” which currently only has “rule2”

#view all collections
$afw.NetworkRuleCollections

#view the specific collection rules using place in array
$afw.NetworkRuleCollections[1].Rules | ft

#add my new rule to my collection
$afw.NetworkRuleCollections[1].AddRule($newrule)

#if you like, check it has updated as desired
$afw.NetworkRuleCollections[1].Rules | ft

#If as expected, update AFW
Set-AzFirewall -AzureFirewall $afw

The last command can take a minute or two to complete. Once it has, you can see the rule is now added to my collection2. The Portal will display it correctly, but you cannot edit correctly with the glitch.

And that’s it! You’ve successfully added an IP Group as a destination to your Azure Firewall. Again, please be careful, the above is only a guide and I cannot be responsible for your Azure Firewall 🙂